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Project Summary 

Sample Description 
Twenty human serum samples were received. Ten of these samples were from colorectal cancer patients (CRC, 
Stage IV). The remaining ten samples were from non-affected individuals (referred to as healthy). Individuals in both 
the CRC and healthy groups were between 40 and 80 years of age at the time of sample collection. 

Goal 
The goal of the present study is to identify circulating protein CRC biomarkers that will be subsequently validated 
in an expanded sample cohort. In addition, the biological significance of detected protein abundance changes 
should be interpreted, and peptide-level data should be assessed to elucidate potential proteoform changes in 
CRC. 

Assay Summary 
Untargeted bottom-up, label-free proteomics analysis was performed on all samples. Protein isolation and digestion 
was performed with the Seer Proteograph XT assay. Peptide digests were analyzed with DIA LC/MS/MS utilizing the 
Orbitrap Astral mass spectrometer. 

Analysis Summary 
Data were processed with a library-free search and the relative protein and peptide abundance was quantified. 
Unsupervised and supervised statistical analyses were performed to assess group separation and protein and 
peptide-level differences between healthy individuals and CRC patients. Results were aggregated through pathway 
analysis.  

Results Summary 
Global proteomics analysis identified over >5k proteins and 50k peptides that provided separation of CRC and 
healthy groups. Statistical analysis revealed 25 proteins and 47 peptides that were differentially expressed in CRC. 
Global interpretation of the proteomics data revealed three primary biochemical pathways that are dysregulated 
in CRC: 1) upregulation of glycine, serine, and folate metabolism, 2) Downregulation of beta oxidation and the 
electron transport chain, and 3) upregulation of tyrosine and catecholamine catabolism. To better contextualize 
these results, we recommend the following: 1) untargeted metabolomics profiling of serum samples that includes 
early-stage and inflammatory bowel disease (IBD) patients, 2) expanding the sample cohort for proteomics to 
validate potential biomarkers and control for IBD effects, and 3) profiling of primary tumor tissue and healthy tissue 
through integration of publicly available transcriptomics data. 
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Results 

Analyte Summary 
In the comprehensive proteomic profiling of the samples, two protein fractions for each sample were created 
through the Proteograph XT assay (see details in the Experimental Methods). These fractions were profiled 
separately with LC/MS/MS for each sample. In total, 68,238 peptides corresponding to 7,027 protein groups were 
profiled across the samples. In data pre-processing, the abundance of the detected peptides were mapped to their 
corresponding protein groups. A protein group consists of 1+ protein(s), which are generally isoforms whose peptides 
cannot be distinguished with LC/MS/MS alone. The abundance of the measured peptides for a protein are 
normalized and aggregated into a single abundance measurement for the protein group, see Experimental 
Methods. The breakdown of the peptide and protein group detections are summarized in Figure 1 and Figure 2, 
respectively. Proteins and peptides that had a missing value rate greater than 75% were excluded from downstream 
analysis. For this study, this resulted in 50,079 peptides and 5,724 proteins that were available for statistical 
analysis.  

 

Figure 1: Peptide detection breakdown. The peptides detected in each fraction (Fraction 1 and Fraction 2) are shown in the Venn 
diagram. These values are for peptides detected in 1+ of the research samples.  
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Figure 2: Protein detection breakdown. The proteins detected in each fraction (Fraction 1 and Fraction 2) are shown in the Venn 
diagram. These values are for proteins detected in 1+ of the research samples. 
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Protein Associations 
In the following sections, the trends in individual peptide measurements and aggregated protein-group abundance 
values are assessed with both unsupervised (agnostic of sample groups) and supervised (discriminating between 
sample groups).  

Unsupervised Analyses 
The global trends in the proteomics data are assessed through unsupervised principal component analysis (PCA) 
and hierarchical clustering analysis (HCA, visualized through a heatmap), see Experimental Methods. These results 
are presented at the peptide level in Figures 3 and 4 and the protein level in Figures 5 and 6. When considering 
both peptide-level and protein-level abundance values, we see clustering of samples that correspond to the 
experimental groups (healthy and CRC). These results demonstrate the dysregulation of the human proteome that 
occurs in CRC. In the subsequent sections, we will perform supervised statistical analyses to identify proteins 
biomarkers of CRC and interpret the biological significance of these proteins through pathway analysis. 

 

Figure 3: Principal components analysis (PCA) of peptide-level data. The peptide profiles for each sample are visualized in 
the scatter plot above. Samples are color-coded based on their respective groups. The specific colors for each group are 
provided in the legend. 
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Figure 4: Heatmap and hierarchical clustering analysis of peptide-level data. The peptide profiles for each sample 
are visualized in the heatmap above and clustered. Each column represents a sample, and each row represents a 
peptide. Columns are colored according to experimental type. The color of each cell indicates the log2(fc) relative to 
the mean level of each peptide in the healthy group. 
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Figure 5: Principal components analysis (PCA) of protein-level data. The protein profiles for each sample are visualized in the 
scatter plot above. Samples are color-coded based on their respective groups. The specific colors for each group are provided 
in the legend. 
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Figure 6: Heatmap and hierarchical clustering analysis of protein-level data. The protein profiles for each sample 
are visualized in the heatmap above and clustered. Each column represents a sample, and each row represents a 
protein. Columns are colored according to experimental type. The color of each cell indicates the log2(fc) relative to 
the mean level of each protein in the healthy group. 
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Differential Expression Analysis 

 
To determine specific differences in protein and peptide levels between the healthy and CRC samples, a one-way 
ANOVA was conducted on all profiled analytes. This analysis identified 47 peptides and 25 proteins that were 
differentially expressed (q < 0.05). The associated volcano plots for the peptide and protein measurements are 
shown below in Figures 7 and 8, respectively.  

 

 

Figure 7: Volcano plot of peptides. The q-values (q) and log₂ fold-changes of the peptide levels between healthy and 
CRC samples are plotted against each other in the plot above. Red dots indicate peptides that pass the q < 0.05 cutoff. 

 

 

Figure 8: Volcano plot of proteins. The q-values (q) and log₂ fold-changes of the protein levels between healthy and 
CRC samples are plotted against each other in the plot above. Red dots indicate proteins that pass the q < 0.05 cutoff. 
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The statistically significant peptides (Figure 9) and proteins (Figure 10) are shown in the heatmaps below. Notably, 
multiple peptides were able to reach statistical significance, whose aggregating protein abundance did not. Peptide 
measurements are often more sensitive and precise (e.g., measuring specific proteoform) when compared to the 
summarized protein abundance, which leads peptide-level measurements to be more accurate biomarkers in some 
cases.  

 

Figure 9: Heatmap of significantly altered peptides. The normalized abundance of significantly altered peptides are 
plotted for each experimental group. The color of cells indicates the log2 fold change relative to the healthy group. 
The peptides are labeled by their protein group concatenated with their peptide modified sequence. * indicates 
carbamidomethylation modification on cysteine residue. 
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Figure 10: Heatmap of significantly altered proteins. The normalized abundance of significantly altered proteins are 
plotted for each experimental group. The color of cells indicates the log2 fold change relative to the healthy group. 
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Interpretation 

Pathway Analysis 
To gain biological insights from the dysregulated proteins, an over-representation analysis was conducted. This 
identified key biochemical pathways (signaling, metabolic, protein, physiological, and disease pathways) that were 
altered between the healthy and CRC samples (Figure 11). This analysis identified 28 pathways that were enriched 
for proteins showing statistically significant changes in CRC. The diversity of these pathways underscores the 
magnitude of molecular dysregulation in CRC as well as breadth of proteome coverage achieved.  

 

 

Figure 11: Pathway analysis of significant proteins. The dot plot displays the enriched pathways identified in the analysis, with 
their corresponding significance levels represented on the x-axis. The significance threshold (p = 0.05) is denoted by the grey 
dashed line. The size of the dots reflects the number of proteins that showed statistical differences between the sample groups. 
Additionally, the color of the dots represents the enrichment ratio, which reflect the extent to which the observed number of 
statistically significant proteins in a pathway deviate from what would be expected by random chance. 
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The two most enriched pathways relate to folate metabolism and are driven by the upregulation of the same four 
proteins (FTCD, MTHFS, AL1L1, C1TC). A heatmap of these proteins are shown in Figure 12. These upregulated 
proteins are all involved with the conversion of tetrahydrofolic acid species. These interconversions provide one-
carbon units for purine and pyrimidine synthesis as well as change the redox balance through the 
production/consumption of NADPH. The production of NAPDH is critical for oxidative stress and upregulation of 
one-carbon metabolism has been shown to provide protection against chemotherapeutics (PMID: 36973440).  

 

 

Figure 12: Heatmap of folate metabolism proteins across healthy and diseased samples. Each row represents a 
protein within the pathway, while columns correspond to the experimental conditions. 

 

In addition, seven of the enriched pathways relate to serine and glycine metabolism and are all driven by the 
enrichment of the same 8 proteins (GNMT, DLDH, SERA, GLCTK, SDHL, SARDH, GAMT, and GLYC) that are 
upregulated in CRC. These proteins are shown in Figure 13. Upregulation of these proteins is consistent with several 
diseases, including hyperglycinemia, sarcosinemia, and 3-phophoglycerate dehydrogenase deficiency. 
Upregulation of glycerate kinase (GLCTK) and D-3-phosphoglycerate dehydrogenase (SERA) suggests increased 
synthesis of serine from glycerate. Serine can then be catabolized to produce the essential amino acid cysteine 
and glycine through the homocysteine cycle or used for nucleotide synthesis through one-carbon metabolism. The 
high demand for amino acids and nucleotides to support cancer cell proliferation is consistent with the upregulation 
of this pathway and is further supported by the changes in folate metabolism discussed above. One-carbon 
metabolism is also connected to epigenetic modifications such as DNA methylation.  
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Figure 13: Heatmap of serine and glycine-associated proteins across healthy and diseased samples. Each row represents a 
protein within the pathway, while columns correspond to the experimental conditions. 

 

Two of the most enriched pathways both relate to mitochondrial metabolism: the mitochondrial electron transport 
chain (Figure 14) and mitochondrial beta-oxidation of long-chain saturated fatty acids (Figure 15). In both cases, we 
see a downregulation of proteins in this pathway. These pathways are naturally connected as beta oxidation 
produces acetyl-CoA units that can be metabolized to produce reducing equivalents used to generate ATP in the 
electron transport chain. Downregulation of both pathways suggests that, systemically, beta-oxidation is reduced, 
causing a corresponding downregulation of the electron transport chain. This is further supported by enrichment in 
beta-oxidation of medium-chain fatty acids as well (Figure 16).  
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Figure 14: Heatmap of mitochondrial electron transport chain proteins across healthy and diseased samples. Each row 
represents a protein within the pathway, while columns correspond to the experimental conditions. 
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Figure 15: Heatmap of mitochondrial beta-oxidation of long-chain saturated fatty acid associated proteins across healthy 
and diseased samples. Each row represents a protein within the pathway, while columns correspond to the experimental 
conditions. 
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Figure 16: Heatmap of mitochondrial beta-oxidation of medium-chain saturated fatty acid associated proteins across 
healthy and diseased samples. Each row represents a protein within the pathway, while columns correspond to the 
experimental conditions. 

 

Seven pathways that were enriched largely relate to tyrosine and monoamine metabolism and were all driven by 
changes in five proteins (MIF, COMT, MAAI, ATTY, HPPD) that are upregulated in CRC. These proteins are shown in 
the heatmap provided in Figure 17. These changes are associated with multiple diseases, including dopamine beta 
hydroxylase deficiency, monoamine oxidase-A deficiency, and tyrosinemia. The most upregulated proteins are 
tyrosine aminotransferase (ATTY) and 4-hydroxyphenylpyruvate dioxygenase (HPPD), which have a >1000-fold 
abundance in CRC relative to healthy. HPPD is a key enzyme in regulating tyrosine catabolism and has been 
implicated in many diseases, including colon and breast cancer. For colon cancer in particular, it has been 
suggested as a prognostic biomarker, and small molecular inhibitors of HPPD are currently in development (PMID: 
37794595). ATTY, HPPD, and MAAI (maleylacetoacetate isomerase) are part of linear pathway that converts 
tyrosine to fumarate and acetoacetate. Catechol O-methyltransferase (COMT) was also upregulated in CRC and is 
one of the enzymes that degrades catecholamines (dopamine, norepinephrine, etc.). COMT has been shown to be 
upregulated in primary colon cancer tumor tissue (PMID: 20646666). Together, these results suggest increased 
catabolism of tyrosine and catecholamines potentially to fuel tumor metabolism.  
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Figure 17: Heatmap of tyrosine and monoamine metabolism proteins across healthy and diseased samples. Each row 
represents a protein within the pathway, while columns correspond to the experimental conditions. 

Heatmaps for all 314 biochemical pathways assessed as well as the detailed results of the statistical analysis is 
provided in the Supplementary Information.  

 

Candidate Biomarkers 
Twenty-five proteins reached statistical significance between CRC and healthy groups. To compare the ability of 
these proteins to stratify individuals by disease status, we computed receiver-operating characteristic (ROC) curves 
for the top 10 most statistically significant proteins detected (Figure 18). These curves plot the false positive rate 
(FPR) vs the true positive rate (TPR) of predicting CRC status when applying different abundance cutoffs for a protein. 
The FPR is fraction of healthy individuals that were incorrectly classified as CRC. The TPR is the fraction of CRC 
individuals that were correctly classified as CRC. The ability of a protein to separate sample groups can be 
quantified by computing the area under the ROC curve (AUROC), which ranges from 0.0-1.0. Perfect separation of 
sample groups is achieved with an AUROC of 1.0, where, at FPR of 0.0, a TPR of 1.0 is achieved. Random performance 
has a AUROC of 0.5.  
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Figure 18: ROC curves for top 10 most statistically significant proteins. ROC curves are shown in the plot above for the top 10 
most statistically significant proteins. Random performance is shown in the grey dashed line. Proteins are denoted with 
different colors. The AUROC is provided for each protein in the legend. The greater the AUROC, the better separation is 
achieved between sample groups.  

 

When examining the ROC curves for the top 10 most statistically significant proteins, all are able to separate sample 
groups with an AUROC > 0.95, demonstrating the ability of untargeted proteomics to discover circulating 
biomarkers. The most stratifying protein was translocator protein (TSPO), which achieved perfect separation of 
sample groups. The levels of TSPO across the sample groups are shown in Figure 19 and clearly show the strong 
downregulated of TSPO in CRC. TSPO is the mitochondrial translocator protein that has high binding affinity for 
many small-molecule drugs and cholesterol. TSPO is expressed in the colon and has been showed to be over-
expressed in inflammatory bowel disease (IBD) as well as colon cancer cells (PMID: 20222126). Given TSPO 
biological function is to regulate molecular transport to the mitochondria and mitochondrial metabolism is likely 
perturbed in CRC from the pathway analysis results, TSPO may be a potential therapeutic target for CRC.  
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Figure 19: TSPO protein levels. The boxplot above shows the abundance of TSPO, the protein achieving the highest AUROC, 
across the healthy and diseased sample groups. 
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Conclusions 
Global proteomics analysis of human serum from healthy individuals and CRC patients identified over >5k proteins 
and 50k peptides that were present in >25% of samples. Unsupervised analysis of the protein and peptide-level 
data revealed dramatic proteome dysregulation and separation of CRC and healthy groups in PCA and HCA 
analysis. Statistical analysis revealed 25 proteins and 47 peptides that showed a statistically significant change in 
abundance in CRC relative to healthy.  

One of the statistically significant proteins, TSPO, perfectly stratified the healthy and CRC populations. TSPO is 
known to be upregulated in colon cancer and IBD. Given its role as mitochondrial transporter, it may have a 
functional role in the changes to lipid metabolism occurring inside mitochondria that were identified.  

Global interpretation of the dysregulated proteins through pathway analysis offered additional biological insights 
into biochemical dysregulation in CRC. These findings are summarized below: 

- Upregulation of glycine, serine, and folate metabolism in the cytosol. These alterations were consistent 
with increased one-carbon metabolism used to fuel nucleotide synthesis and substrates for epigenic 
modifications. Upregulation of these pathways is also consistent with increased NADPH production to buffer 
oxidative stress, such as that induced with chemotherapeutics.  

- Downregulation of the electron transport chain (ETC) and beta oxidation. Proteins involved with ATP 
production via the ETC are downregulated in CRC compared to healthy individuals. Additionally, enzymes 
involved with the catabolism of medium and long-chain fatty acids through beta oxidation were 
downregulated. Beta oxidation produces acetyl units that can be used to generate reducing equivalents 
that fuel the ETC. These results suggest that in CRC, energy production from fats is reduced systemically.  

- Upregulation of tyrosine and mono-amino metabolism. Multiple up-regulated proteins relate to tyrosine and 
catecholamine catabolism pathways. These results suggest increased catabolism to support tumor 
metabolism. One of the most upregulated proteins, HPPD, has been implicated in CRC. ATTY, HPPD, and 
MAAI are part of linear pathway that converts tyrosine to fumarate and acetoacetate, which provide 
substrates to produce ATP via the TCA cycle.  
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Next Steps 
To better contextualize these results, we recommend the following experiments and analyses: 

- Perform untargeted metabolomics profiling of serum samples to provide a greater mechanistic link between 
the dysregulated metabolic catabolism and synthesis pathways with altered protein abundance. This 
would provide considerable clarity into the biological consequences of one-carbon and tyrosine 
metabolism upregulation as well as the nutrient landscape that may influence the fatty acid oxidation 
downregulation.   

- Profiling (both metabolomic and proteomic) of serum from patients with IBD, but not CRC, would 
help stratify the protein changes from IBD with CRC. 
 

- Profiling of primary tumor tissue and healthy tissue to determine which proteome alterations are 
specific to the tumor as opposed to systemic changes. Public transcriptomics data would provide 
a solid starting point to determine the relevance of these findings to tumor biochemistry.  
 

- Expand the sample cohort to validate candidate biomarkers and build multivariate models of CRC. By using 
this study to perform a power analysis, we recommend a n=100 per sample group to detect a 50% change 
in protein abundance with a power of 85%. In such a follow-up study, including early-stage CRC patients 
would provide insight into disease progression and enable identification of early disease biomarkers to 
improve patient outcomes.  
 

- Proteoform analysis of discordant peptides to identify peptide variants and proteoform (phosphorylation, 
ubiquitination, etc.) changes between CRC and healthy serum.  
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Experimental Methods 

Sample Preparation 

Sample handling and storage 
Samples were frozen at -80°C after receipt. 

Bottom-up proteomics sample preparation 
Serum samples are thawed and prepared for bottom-up LC/MS/MS-based proteomics analysis with the SP100 
automation instrument. 240 µL of serum samples are loaded on the instrument each of which is then aliquoted into 
two wells (100 µL each), and each tube is incubated with a unique nanoparticle (NP) suspension. After incubation 
with the NPs and subsequent washing steps, to remove non-specific and weakly bound proteins, bound proteins 
were then reduced, alkylated, and digested with trypsin protease to generate tryptic peptides for downstream 
LC/MS analysis. The peptides are then desalted, and all detergents are removed using a mixed media filter plate 
and a positive pressure (MPE) system. The peptides are eluted, and peptide quantitation is performed on the SP100 
Automation instrument using the Piece Fluorescent Assay Kit. Peptides are then dried and stored at -80 °C until 
LC/MS analysis. 

Data acquisition and pre-processing 

LC/MS/MS analysis of digested peptides 
LC/MS/MS mobile phases A and B were prepared as follows:  

A) 0.1% FA, 100% water  

B) 0.1% FA, 100 % ACN 

7 µL of the reconstituted sample was injected onto a Vanquish Neo HPLC System with a 50 cm mPAC HPLC column 
and analyzed by Reversed Phase (RP) LC-MS/MS by using the following gradient at a flow rate of 1 µL/min: 0-1.5 
min: 5% B, 1.5-23.5 min: 25% B, 23.5-29.0 min: 40-90% B, 29-29.75 min: 1% B. MS data acquisition was performed 
with a Thermo Fisher Orbitrap Astral mass spectrometer operating in data-independent acquisition (DIA) mode with 
3 m/z isolation windows ranging from 380-980 m/z. 

Data preprocessing 

Spectral Search and Peptide Identification 
LC/MS/MS data acquired on both protein fractions for each sample were first processed with the DIANN (v1.81.) 
software with a library-free spectral search. The software performs an in-silico protein digestion based on the input 
proteome (human proteins and common contaminant sequences downloaded from UniProt). MS/MS spectra for 
each peptide predicted from the in-silico digestion are then computed and used to identify peptides measured in 
the acquired LC/MS/MS data and assign them to defined protein groups. Peptide identifications are then scored and 
filtered with a neural network-based approach. A protein-group, peptide q-value, and library q-value of 0.01 was 
applied. The raw peptide abundance is calculated using modeled chromatographic peaks. Further details are 
provided in the DIANN publication. DIANN parameters are included in the Supplementary Data.  

Peptide and Protein Quantification 
After peptide identification, peptide abundance values are normalized and summed across fractions for each 
sample through the application of delayed normalization (as implemented within the maxLFQ software). In brief, a 
scaling factor is determined for each LC/MS/MS run that minimizes the variance across all detected peptides for all 
samples. This is performed to avoid systematic errors that are derived from pipetting, sample collection, or other 
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pre-analytical variation. After performing delayed normalization, the normalized peptide values are summed across 
fractions to yield a single peptide abundance value for each peptide for each sample. To remove batch effects, 
ComBat normalization is applied to address batch effects derived from the Proteograph assay and LC/MS/MS runs. 
Lastly, missing peptide abundance values are imputed for peptides measured in >25% of samples by estimating 
missing peptide values as ½ of the minimum detected intensity for that peptide across all research samples. 

After peptide abundance calculation, the protein-group abundance is inferred through the maxLFQ algorithm. In 
brief, a peptide ratio matrix is computed for each protein by computing the median ratio of peptide abundance for 
each pair of samples when considering the peptides measured in both samples. This matrix then represents an 
over-determined systems of linear equations which are then solved to yield a single protein abundance value for 
each sample. These values are then scaled such that the mean protein abundance is equal to the mean summed 
peptide abundance for each sample.  

Prior to downstream analysis, analytes missing in >25% of samples are removed. Data is then log2 transformed. 

Statistical Analysis 
Hypothesis testing was executed utilizing a one-way ANOVA, which does not assume equal variances among the 
groups. Log2 transformed analyte (protein/peptide) intensities were used for null hypothesis testing. Fold-changes 
were computed from non-log2 transformed intensities. 

Hierarchical clustering analyses was performed based on log2(fc) transformed values and Euclidian distance. 
Clusters were calculated with the UPGMA algorithm. 

Over-representation analysis was performed with a Fisher’s Exact test that compares the expected number of 
analytes found to be statistically significant in each pathway with the number of significant analytes found in each 
pathway. This analysis was performed with the PathBank database and includes metabolic, protein, signaling, 
disease, and physiological pathways. 
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Appendix 

Supplementary Files 
1. Raw_data.zip: raw LC/MS/MS data (.raw) format 
2. SupplementaryTables.xlxs: excel file containing sample metadata, technical variation metrics for each 

peptide and protein, all detected peptide and protein features and their raw intensities and normalized 
intensities, the detailed results of the statistical analyses. 

3. Plots.zip: high-resolution images for all figures in this report as well as boxplots showing the intensity of 
each protein and peptide across all experimental conditions.  

Glossary 
1. LC/MS/MS: Liquid chromatography coupled to tandem mass spectrometry. The analytical technique used 

for the proteomics assays. 
2. Peptide: A tryptic peptide that was measured in the LC/MS experiment. These are portions of the proteins 

present in the sample. 
3. Protein Group: A group of proteins measured in the proteomics analysis. Proteins within a protein group 

consist of proteins whose peptides cannot be distinguished with LC/MS/MS. 
4. Post-translational modification (PTM): a chemical modification made to a protein after translation.  
5. Proteoform: A single protein species complete with PTM and full sequence specification. 
6. Intensity: The relative abundance of the protein/peptide in the sample. 

  

http://www.panomebio.com


22
4340 Duncan Avenue, St. Louis, MO 63110

Contact us to 

initiate a project
www.panomebio.com info@panomebio.com

http://www.panomebio.com
mailto:info@panomebio.com

	Project Summary
	Sample Description
	Goal
	Assay Summary
	Analysis Summary
	Results Summary

	Results
	Analyte Summary
	Protein Associations
	Unsupervised Analyses
	Differential Expression Analysis


	Interpretation
	Pathway Analysis
	Candidate Biomarkers

	Conclusions
	Next Steps
	Experimental Methods
	Sample Preparation
	Sample handling and storage
	Bottom-up proteomics sample preparation

	Data acquisition and pre-processing
	LC/MS/MS analysis of digested peptides

	Data preprocessing
	Spectral Search and Peptide Identification
	Peptide and Protein Quantification

	Statistical Analysis

	Appendix
	Supplementary Files
	Glossary


